DNA-Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by near Infrared Irradiation.

Gold nanorods were attached to the gene of enhanced green fluorescence protein (EGFP) for the remote control of gene expression in living cells. The UV-vis spectroscopy, electrophoresis, and transmission electron microscopy (TEM) were used to study the optical and structural properties of the EGFP DNA and gold nanorod (EGFP-GNR) conjugates before and after femto-second near-infrared (NIR) laser irradiation. Upon NIR irradiation, the gold nanorods of EGFP-GNR conjugates underwent shape transformation that resulted in the release of EGFP DNA. When EGFP-GNR conjugates were delivered to cultured HeLa cells, induced GFP expression was specifically observed in cells that were locally exposed to NIR irradiation. Our results demonstrate the feasibility of using gold nanorods and NIR irradiation as means of remote control of gene expression in specific cells. This approach has potential applications in biological and medical studies.

2016011901

2016011902

20160119033

Expression of EGFP in cells incubated with the DNA-GNR conjugates. (a) The bright-field image of cells (white circles) incubated with the  onjugates after the laser irradiation. (b) The confocal image of the same cells showing GFP expression.

 

Multiple Release Kinetics of Targeted Drug from Gold Nanorod Embedded Polyelectrolyte Conjugates Induced by Near-Infrared Laser Irradiation

The conjugates of gold nanorods and the model drug, fluorescein isothiocyanate (FITC), embedded inside polyelectrolytes (GNRs/FITC@PLE) were synthesized to study the release kinetics of FITC under femtosecond near-infrared (NIR) laser irradiation. The optical and structural properties of GNRs/ FITC@PLE conjugates before and after laser treatments were examined using UV-vis spectroscopy, confocal microscopy, and transmission electron microscopy (TEM). The release of FITC from the conjugates was induced by the heat generated from gold nanorods under laser irradiation. The concentration of released FITC was measured as the time of continuous and periodic laser irradiation was varied. Within 5 min of the laser exposure, the release rates of FITC exhibited zero-order and first-order kinetics under continuous and periodic irradiation, respectively. Furthermore, a drug release system was designed based on the conjugates of gold nanorods and the anticancer drug, paclitaxel (PTX), embedded inside polyelectrolytes (GNRs/PTX@PLE). The conjugates were applied for in vitro studies with breast cancer cells. The release of PTX from the conjugates was triggered by NIR laser irradiation, and the inhibition rates of the cells showed strong dependencies on the irradiation modes and time. The results suggested that the multiple releases of PTX from the conjugates can be controlled by laser irradiation within a long period of time. Our system holds great potential for future therapeutic applications on breast cancers.

 

2016011904

2016011905

2016011906